On Kusuoka Representation of Law Invariant Risk Measures

نویسنده

  • Alexander Shapiro
چکیده

In this paper we discuss representations of law invariant coherent risk measures in a form of integrals of the average value-at-risk measures. We show that such an integral representation exists iff the dual set of the considered risk measure is generated by one of its elements, and this representation is uniquely defined. On the other hand, representation of risk measures as a maximum of such integral forms is not unique. The suggested approach gives a constructive way for writing such representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Kusuoka Representations

This paper addresses law invariant coherent risk measures and their Kusuoka representations. By elaborating the existence of a minimal representation we show that every Kusuoka representation can be reduced to its minimal representation. Uniqueness – in a sense specified in the paper – of the risk measure’s Kusuoka representation is derived from this initial result. The Kusuoka representation i...

متن کامل

Law invariant risk measures on L∞(Rd)

Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks. Jouini-Meddeb-Touzi (2004) and Burgert-Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland-Galichon-Henry (...

متن کامل

Kusuoka Representations of Coherent Risk Measures in Finite Probability Spaces

Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measures, which a...

متن کامل

Kusuoka representations of coherent risk measures in general probability spaces

Abstract: Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measure...

متن کامل

Stochastic Orders and Risk Measures: Consistency and Bounds

We investigate the problem of consistency of risk measures with respect to usual stochastic order and convex order. It is shown that under weak regularity conditions risk measures are consistent with these stochastic orders. This result is used to derive bounds for risk measures of portfolios. As a by-product, we extend the characterization of Kusuoka (2001) of coherent, law-invariant risk meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013